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Abstract The climatically-important compound dim-

ethylsulfide (DMS) has been reported to be abundant in

the Arctic, particularly in the marginal sea ice zone.

Due to these high concentrations, it may play an

important role in climate control. A DMS monthly

climatology for July through October was created

employing various ocean characteristics and spatial

modeling techniques commonly used for describing

species distributions in ecology. Comparisons between

observed and predicted values of surface seawater

DMS concentrations led to r2 values of 0.61, 0.87, 0.66,

and 0.37 for July, August, September, and October,

respectively. Measurement data used for model devel-

opment for July through October were variably

distributed spatially. For October only, data were

sparse and clustered, resulting in the poor results

obtained for this month. Mean sea ice concentration

and surface nitrate concentrations were found to be

important predictors of surface seawater DMS con-

centrations. A negative relationship between sea ice

concentration and DMS, and a two-phase relationship

between nitrate and DMS were found. The two-phase

relationship may be indicative of how DMS concen-

trations are affected when nitrate is the limiting

nutrient. From July to September, predicted DMS

concentrations were generally lowest under the sea ice.

High monthly DMS concentrations (up to 10.7 nM)

were predicted in the seasonal ice zone. The highest

DMS concentrations in September (*2.6 nM) were

predicted along the ice edge. In order to create more

accurate climatologies and to increase our understand-

ing of sulfur cycling in the Arctic, a higher spatial

and temporal distribution of DMS measurements is

required.

Keywords Dimethylsulfide � Arctic � Sea ice �
TreeNet � GIS � Spatial modeling

Introduction

Dimethylsulfide (DMS) is a marine biogenic com-

pound that is important to climate as a precursor of

cloud condensation nuclei (CCN). DMS is formed by
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the degradation of its precursor, dimethylsulfoniopro-

pionate (DMSP). DMSP is produced by marine

phytoplankton, and is hypothesized to act as a stress

reduction compound (Sunda et al. 2002), grazing

deterrent (Wolfe et al. 1997), foraging cue (Nevitt

et al. 1995), cryoprotectant (Karsten et al. 1996),

osmolyte (Kirst 1996), and overflow mechanism for

reduced sulfur under nutrient limited-unbalanced

growth conditions (Stefels et al. 2007). In Arctic

waters, Phaeocystis spp. and diatoms are significant

contributors to the water column DMSP and DMS

budgets (Matrai and Vernet 1997). Degradation of

DMSP to DMS can occur in healthy cells via lyase

activity, or when DMSP is released into the ocean

when a cell has been compromised due to natural

senescence or grazing (Stefels et al. 2007). DMSP in

the dissolved ocean pool can also be converted to

DMS by bacterial activity. Part of the DMS is then

transferred to the atmosphere where it can form a

variety of oxidized sulfur compounds that aid in the

growth of aerosols to CCN, thereby influencing cloud

formation and albedo (Bates et al. 1987a; Charlson

et al. 1987; Andreae and Rosenfeld 2008). The role of

DMS in the Arctic is further compounded by the

presence of seasonal sea ice, where ice algae are an

important source of DMS for the arctic atmosphere

(Levasseur et al. 1994). In the marginal sea ice zones

biological productivity is enhanced as melting ice

releases ice-bottom algae and detritus into the upper

water column, leading to an accumulation of dissolved

organic matter (Matrai et al. 2007a). Melting sea ice

also helps to maintain the pycnocline that regulates

surface DMS concentrations through the supply of

organic matter from richer water underneath and the

balance between competing DMS sinks, such as, DMS

photolysis, bacterial consumption, and degassing to

the atmosphere (Galı́ and Simó 2010).

Simulation experiments conducted by Gabric et al.

(2005) suggest that the annual DMS flux from the high

Arctic may increase to over 80% of present day levels

by 2080 under a tripled CO2 scenario (Gabric et al.

2005; Qu and Albert 2010). The increase in DMS

emissions to the atmosphere could impact the overall

radiation budget of the Arctic through changes in

cloud albedo. The negative feedback of increased solar

radiation backscatter caused by increased cloud

albedo may mask the decreased albedo from sea ice

loss (Gabric et al. 2005).

For the purposes of this study, the Arctic is defined

using the astronomical definition of 66.5�N latitude.

Seasonal sea ice does not occur south of 66.5�N

between July and October, the months that yield the

most spatially-distributed data in the high Arctic (with

the exception of April).

Until recently, no efforts have been made to create a

climatology for Arctic sea surface DMS concentra-

tions as a stand-alone model. However, sulfur cycling

in the skeletal sea ice layer has been modeled by the

COSIM (Climate Ocean Sea Ice Modeling) group at

the Los Alamos National Laboratory. The COSIM

model, currently in press, contains a sea ice DMS

component. Some climatologies of global DMS con-

centrations include the Arctic in overall simulations

(e.g. Kettle and Andreae 2000; Kettle et al. 1999; Simó

and Dachs 2002), but these do not explicitly treat sea

ice as a model variable and are meant primarily to

study mean global patterns.

The mechanisms of DMS formation and loss are not

well understood, making this potentially important

compound a prime candidate for spatial modeling

techniques. Spatial modeling is commonly used for

describing the distribution of various animal and plant

species, and combines Geographic Information Sys-

tems (GIS) with complex algorithms developed to

handle ‘‘messy’’ ecological data (Elith et al. 2006;

Craig and Huettmann 2009; Cushman and Huettmann

2010). TreeNet (Salford Systems, 2002) employs an

algorithm known as stochastic gradient boosting,

which can make predictions on a target variable via

associations with up to 50 environmental (predictor)

variables. This powerful algorithm allows calculations

without a priori assumptions regarding the variables

that influence prediction values (Breiman 2001;

Friedman 2002). This may be important when exam-

ining a system defined by complex relationships (e.g.,

DMS). Combining TreeNet with GIS and various

freely-available environmental data enables efficient,

accurate prediction of Arctic sea surface DMS

concentrations.

The objective of this study was to create spatial

predictions of DMS concentrations at the sea surface

during the boreal summer, using associations with

ocean characteristics such as nutrients and sea ice.

Furthermore, the relationships between these features

and DMS were examined via the variable ranking

scheme as determined by TreeNet output.
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Data and methods

The Pacific Marine Ecological Laboratory (PMEL)

database provided 1028 mixed-layer DMS measure-

ments for the defined Arctic region. These data were

filtered to the top 5 m of the ocean surface, leaving

854 data points for use in analysis. The measure-

ments spanned the time period from 1985 to 2008

and were taken by 12 contributors (see Table 4 in

Appendix). Data were segregated by the months

July through October and projected onto the North

Pole Stereographic spatial coordinate system. The

months July through October were chosen because

the extent of the spatial distribution of the data was

generally broader during these months than in all

other months with the exception of April. April was

not chosen for modeling because it does not closely

lead or follow the month of September, when sea

ice is at its minimum. It is also during July and

August when DMS concentrations in the Arctic

atmosphere may be highest (Ferek et al. 1995;

Lundén et al. 2010).

Spatial distribution of surface seawater DMS

measurements was best for July (in relation to all

other months), as measured with a nearly-complete

cross section of the Arctic Basin. In August, DMS

measurements were only collected between the North

Pole and Greenland. Most DMS measurements in

September were collected in the Beaufort and Chukchi

seas, close to land, but a transect of DMS measure-

ments was also available from Svalbard toward the

North Pole. The spatial distribution of DMS measure-

ments for October was of the lowest quality (most

highly clustered, with few available measurements),

with data around Svalbard and in the Chukchi Sea

(Fig. 1). In some cases (e.g., July), some DMS

measurements are outside the clusters (i.e., one data

point in the Chukchi Sea). TreeNet will only take these

data into consideration if information useful for

reducing model error can be obtained. If the data

point does not add any information, then it is treated as

an outlier and down-weighted appropriately in the

process. We are confident, however, that with the

exception of October these data can be used for such a

process because TreeNet is able to deal with ‘messy’

data (Craig and Huettmann 2009), and because similar

methods, e.g. the related Random Forests algorithm,

have been used successfully with spatially-irregular

data (Wei et al. 2010).

A list of all environmental data used in this analysis

can be found in Table 1. Fourteen environmental

variables were used to predict the sea surface DMS

concentration. Concentrations of phosphate and

nitrate, salinity, and sea temperature at the surface

and 10 m depth were downloaded from NOAA’s

World Ocean Atlas (WOA 2005). For bathymetry, the

International Bathymetric Chart for the Arctic Ocean

(IBCAO; Holland 2000) was downloaded. Bathymet-

ric slope and distance to shelf (defined as 100 m depth)

were calculated in ArcGIS 10.0 from the obtained

bathymetry. Mean sea ice concentration was down-

loaded from the National Snow and Ice Data Center

and ice edge, the outer boundary of ice, was located

where at least 15% ice concentration occurred.

Monthly climatologies of solar radiation dose were

calculated according to Vallina and Simó (2007) from

mixed-layer depth and irradiance at the top of the

atmosphere. Also following Vallina and Simo (2007),

mixed-layer depth was defined as the depth where the

temperature difference was 0.1�C from the tempera-

ture at 5 m. Solar irradiation was estimated using

the equations of Brock (1981) with an applied

atmospheric loss factor of 50%. Bathymetry, bathy-

metric slope, and distance to shelf were considered to

be invariant over the time period examined.

Fig. 1 Spatial distribution of Arctic DMS data from the Kettle

database (Kettle and Andreae 2000) for July through October
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Modeling was performed using TreeNet v 2.0,

available in the Salford Data Miner suite. This software

creates a series of regression trees, using statistical

boosting to minimize error. The tree with the lowest error

value is used to create predictions of the target variable

(Friedman 2002). This differs from classic direct corre-

lation analysis in that there is no emphasis on statistical

significance, only on the ability of each variable to lower

the amount of error in predictions. Regression tree splits

are calculated based on a predictor’s ability to lower the

variability in observed measurements, thus creating a

series of ‘‘if’’, ‘‘then’’ (i.e., conditional) statements to

create a rule set for predictions.

To prepare the data for use in TreeNet, the DMS

measurements were associated with the environmental

data via spatial overlays (i.e., points were associated with

pixel values of environmental variables). Spatial over-

lays were performed with the freely-available Geospatial

Modeling Environment (GME; www.spatialecology.

com) software.

To insure a good model selection, ‘‘battery’’ tests

were performed to choose the settings that provided

the best assessment as determined by mean absolute

deviation (MAD) provided in TreeNet. Data were

randomly split into training and assessment datasets

(70 and 30%, respectively) in TreeNet because

previous experience has shown that a 70/30 split in

data tends to provide robust predictions and assess-

ment (Humphries et al., unpublished). The 70% subset

was used to determine the associations between the

target and predictors (i.e., ‘‘training’’). TreeNet then

performed predictions on the remaining 30%, and

compared the predictions to the observed values to

obtain r2 and MAD values.

A regular grid (i.e. a lattice) of points was created in

ArcGIS 10.0 at a resolution of 1 9 1� and was

associated with environmental variables via spatial

overlays. Using the associations determined in the

training phase of TreeNet, DMS concentrations were

predicted to the regular grid. The point predictions

were interpolated using the inverse distance-weighted

function in ArcGIS to generate maps.

TreeNet determines which variables (e.g. nitrate

concentration) are the most important target predictors

by examining the contribution of each environmental

variable to the conditional statements (rules) that are

determined. Predictors are scored on a relative index

from 0 to 100 in which 100 is the most important

predictor. TreeNet also outputs plots of the partial

dependence of predictor variables on the target. The

partial-dependence plots are visual representations of

each variable’s contribution to the prediction of DMS

concentrations (see Fig. 7 in Appendix for an example

from this study). These partial dependence plots are not

easy to interpret; therefore, to further examine the

relationship between DMS and various important

predictors, we plotted the concentrations of measured

DMS versus the top two predictors (environmental

variables).

Results

Output sea surface DMS maps in a North Pole

Stereographic projection are shown in Fig. 2. In July,

hot-spots of DMS were found in the Greenland and

Chukchi seas. Concentrations in these areas ranged

from 4.0 to 7.0 nM and occurred outside the sea ice

periphery, while concentrations under the sea ice were

low (between 0.4 and 2.0 nM). This trend was also

seen in August when higher concentrations of DMS

([5 nM) were predicted near the ice edge, while lower

concentrations of DMS were predicted under the sea

ice. Overall concentrations of measured DMS in

September were low (*0.9 nM; Figs. 2, 3), leading

to lower predicted DMS concentrations than for July

and August. Higher DMS concentrations for Septem-

ber were predicted around the sea ice edge, but the

DMS concentration in hot-spots was only 2–2.5 nM.

There is a clustering of DMS measurements around

northern Alaska in September which likely affected

the assessment and model output by lowering the

variation in the underlying environmental associa-

tions. Taking DMS measurements between the North

Pole and Greenland may have increased variation and

therefore the ability of the model to capture relation-

ships in the data, resulting in better model perfor-

mance in September than for October. Very low DMS

concentrations were predicted for the month of

October, corresponding to the low concentrations of

measured values in this month (*0.5 nM). DMS

concentrations of *0.5 nM occur primarily around

the periphery of the ice and into the Greenland Sea,

with areas of higher concentration under the ice. The

best predictor variable for this month was distance to

shelf; this explains why the output map resembles the

bathymetry. Also, the October data are clustered

around a few, very small areas. Due to this spatial

Biogeochemistry (2012) 110:287–301 291
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distortion, October results are probably not accurate

(Fig. 1; also note the very low r2 value shown in

Table 2). This illustrates the effects of low-quality

spatial data (i.e., very few measurements at spatially-

irregular intervals) on data-driven modeling efforts.

Assessment values for the models with the lowest

MAD values are listed in Table 2, as well as the

number of training and assessment points used in the

analysis. The measured data explained 87% of the

variance for August, while 66, 61, and 37% of the

variance in the data were explained for September,

July, and October, respectively. MAD values were

1.86, 0.70, 0.33, and 0.12 nM for July, August,

September, and October, respectively. In order to

Fig. 2 Monthly mean sea

surface DMS concentration

(nM) for the months July,

August, September, and

October, with ice edge

(defined as[15% sea ice

concentration) overlain

Fig. 3 Mean sea surface DMS concentrations for observed and

predicted values with 95% confidence intervals

Table 2 Assessment values of models from TreeNet as

determined by an independent random subset of 30% of

observed data

Month r2 Mean absolute

deviation

# Training

points

# Testing

points

July 0.61 1.86 209 65

August 0.87 0.70 187 58

September 0.66 0.33 168 54

October 0.37 0.12 90 23

292 Biogeochemistry (2012) 110:287–301
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examine whether models were over- or under-predict-

ing values, observed measurements were associated

with predicted values via a spatial overlay, and means

were compared (Fig. 3). July DMS concentrations

were under-predicted; the predicted mean was

*0.49 nM less than the observed mean. The 4.47

standard deviation of observed values in July may

explain the slight discrepancy between means. August,

September, and October all show high overlap in the

confidence intervals between observed and predicted

values; predicted means were less than observed by

0.11, 0.06, and 0.03 nM, respectively. September was

the only month that slightly over-predicted DMS

concentrations.

The relative importance (influence or relevance) of

predictors of DMS concentrations for the top models is

shown in Fig. 4. The relative importance is a scale

from 0 to 100 which represents the ranking of the

variables for prediction (e.g., a value of 100 is the most

important). For July, August, and September, mean

sea ice concentration was among the top two predictor

variables. Distance to shelf was the top predictor for

October; however, due to the spatial distribution of the

data (which degraded the modeling procedure) we

cannot be confident of this result. Due to the potential

for variable importance to ‘‘flip’’ (e.g., on rare

occasions, variables with an initially low importance

may become highly important when model settings are

changed), which can occur with highly-correlated

variables, the robustness of relationships was tested by

performing a model run across the entire temporal

domain. It was found that mean sea ice concentration

was identified as the top predictor, followed by nitrate

concentrations at the surface and distance to ice edge

(Table 3); similarly, mean sea ice concentration

emerges as one of the top three variables in monthly

results for July, August, and September, while nitrate

concentrations at the surface were among the top three

variables for July and October. Galı́ and Simó (2010)

report that solar radiation dose may be an important

factor in determining DMS concentrations in the

Arctic, however, it was not a highly ranked predictor

for any of the model runs. Salinity was one of the top

three predictor variables for September and October,

but it was not examined further as the relationship was

not supported in the model run across the entire

Fig. 4 Relative importance of all variables as determined by TreeNet output
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temporal domain (Table 3). Distance to ice edge was

among the top three predictor variables for July only,

and it was not examined further, in contrast to surface

nitrate concentrations and mean sea ice concentration.

The relationships between measured DMS and

mean sea ice concentration as well as between

measured DMS and surface nitrate concentrations

are shown in Figs. 5a and 6a, respectively. Mean sea

ice concentration was binned into groups of 0, 5–20,

30–50, 60–90, and 95% sea ice concentration; these

bins were chosen due to the categorical nature of the

data. When these bins were plotted against mean

observed DMS in each bin, it was found that as sea ice

concentration increased, concentrations of DMS

decreased. Mean DMS concentration under 95% sea

ice concentration for all months was *1 nM.

DMS and surface nitrate concentrations were

plotted and fit using a LOWESS smoother to illustrate

the potential relationship between these variables. The

LOWESS smoothed line is nonlinear and may be more

useful for determining relationships between variables

than simple linear smoothers (Cleveland 1979); how-

ever, statistics on the fit of the line are generally

uninformative in this case and we use the line simply

as an illustrative guide. At nitrate concentrations

below *2.0 mmol/m3, DMS concentrations tend to

be higher, showing a slightly positive trend. This

relationship does not appear to exist above nitrate

concentrations of *4.0 mmol/m3. Once this upper

threshold is reached, there is a negative relationship

between nitrate and DMS concentrations.

The relationships between predicted values of DMS

and mean sea ice and surface nitrate concentrations

remain robust (in comparison to the relationships

between measured DMS, mean sea ice concentration,

and surface nitrate concentrations) across the entire

spatiotemporal domain (Figs. 5b, 6b). In general, a

similar pattern is seen in both Figures compared to

Figs. 5a and 6a. The relationship between predicted

DMS and sea ice in Fig. 5b differs slightly from

Fig. 5a but only because the mean values of DMS

differ between Fig. 5a, b. The general negative trend

between DMS and sea ice is still apparent, with a

Table 3 Relative importance of variables based on a model

run using all data from July, August, September and October

Variable Relative

importance

Mean sea ice concentration 100.00

Nitrate concentration (surface) 95.82

Distance to ice edge 85.03

Sea surface temperature 75.76

Phosphate concentration (surface) 70.17

Phosphate concentration (10 m) 61.27

Surface salinity 59.74

Bathymetry 57.40

Nitrate concentration (10 m) 54.04

Bathymetric slope 52.52

Salinity (10 m) 44.49

Distance to shelf edge 42.46

Temperature (10 m) 40.84

Solar radiation dose 35.02

Fig. 5 Mean sea ice concentration (%) plotted against mean

measured DMS concentrations for July through October (a), and

mean sea ice concentration (%) plotted against mean predicted

DMS concentrations for July through October (b)
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minimum mean of 1.31 nM at 95% sea ice concen-

tration. Predicted DMS against surface nitrate con-

centrations in Fig. 6b differs slightly from Fig. 6a in

that the threshold of the negative relationship at low

concentrations of predicted DMS is approximately

2.0 nM in Fig. 6b. Both surface nitrate concentrations

and sea ice exhibited robust relationships with

predicted DMS values; this was not surprising,

because both surface nitrate concentrations and sea

ice were considered top predictors when a model run

was performed over the entire temporal domain.

Figure 7 in Appendix shows the TreeNet partial

dependence plot for nitrate concentrations versus the

partial dependence of predictions of DMS. Partial

dependence is an indicator of the strength of potential

mechanistic relationships with DMS as a function of

local values of the predictor variable (e.g., nitrate

concentrations). For example, when nitrate concen-

trations are below 2.0 mmol/m3, DMS predictions

tend to be higher, while above nitrate concentrations

of 2.0 mmol/m3 they tend to be lower.

Discussion

For the 4 months examined, 854 data points were

available in our study region. Of those 854

measurements only 113 were available for October,

and the October data points were not evenly distrib-

uted over the study region. The October associations

that are determined from TreeNet are, therefore, based

on only a small number of data from very confined

regions. The spatial distribution of these data is

important because the clustering of data points will

affect variation in the associations with environmental

layers; because of the spatial resolution of the

environmental variables, heavy clustering will lead

to many DMS measurements being associated with

very few environmental feature values. High cluster-

ing and few data lead to lowered variation, which

degrades the modeling results. It is, therefore, unlikely

that these October DMS data are truly representative

of patterns across the entire Arctic region, and it is not

surprising that an r2 value of 0.37 was obtained for

October. Based on these findings we are not confident

that the model has produced accurate October DMS

patterns. To alleviate this problem, a more spatially-

uniform sampling of the Arctic in October must be

undertaken.

October DMS concentrations are relatively low,

with a mean of only 0.9 nM. These low measured

concentrations have, therefore, led to low predicted

concentrations. It is possible that higher concentrations

of DMS would be observed if more measurements,

Fig. 6 Surface nitrate concentrations from climatology plotted

against measured sea surface DMS concentrations (nM) fitted

with a LOWESS smoothed line (a), and surface nitrate

concentrations from climatology plotted against predicted sea

surface DMS concentrations (nM) fitted with a LOWESS

smoothed line (b)
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with a more uniform spatial distribution, were made

during October. It is also possible that these low

concentrations could be confirmed as a general trend.

Assessments of July, August, and September showed

higher r2 values. The spatial distributions of data for

these months, as well as the number of data available,

are much better than for October. This spread of data

has enabled us to more accurately capture the rela-

tionships between DMS and the underlying predictor

variables. It has also led to predicted outputs that seem

much more realistic than those for October. Statistical

modeling carries a limitation of being driven wholly by

the data and, therefore, we are making generalizations

about the predictive performance of environmental

variables across the entire Arctic based only upon

information from those areas that are represented by

our data. If measurement data are not representative of

the entire area of study, then misrepresentation of the

predictions can occur.

For the months of July through September, mean

sea ice concentration was determined to be at least the

second most important variable. As a way of confirm-

ing these findings, the model was run using all data.

Mean sea ice concentration emerged as the most

important variable when the analysis was performed

this way. The relationship between sea ice concentra-

tion and measured DMS values was examined further,

and it was found that as sea ice concentration

increased, mean surface DMS decreased. Prediction

maps (except for October) show that the highest

concentrations of DMS occur in the seasonal ice zone

(in July and August) and close to the ice edge (in

September) where elevated concentrations of DMS

have been reported (Ferek et al. 1995; Matrai and

Vernet 1997). It is thought that the melting of sea ice

(in months like July and August) sets the stratification

of the vertical column, which drives biological

productivity and exposure to solar radiation, and

hence, influences DMS concentrations (Galı́ and Simó

2010). Also, Matrai et al. (2007b) report that there is a

high potential benefit to examining sea ice (i.e., ice

edge) as a predictor of high DMSP concentration.

These findings are corroborated by the results obtained

in this modeling study.

Surface nitrate concentrations were also deter-

mined to play an important role in predicting DMS

concentrations, though nitrate was not as strong a

predictor as mean sea ice concentration. Nitrate

concentration was among the top three variables for

all months except July and October, and was ranked

the second most important variable in the run that used

all data. Nitrate affects apparent quantum yields

(AQYs) and rate constants for DMS photolysis

(Bouillon and Miller 2004; Toole et al. 2004). Deal

et al. (2005) suggest that although the AQY may

increase with increasing nitrate concentrations, dis-

solved organic matter, rather than nitrate, is likely

driving the photolysis of DMS in the Bering Sea. In

Antarctic waters, observed DMS photolysis rates

increased with added nitrate, although chromophores

other than nitrate were primarily responsible for the

photolysis of DMS (Toole et al. 2004). The results

obtained here suggest a two-phase relationship

between surface nitrate concentrations and DMS (both

observed and predicted values). This may be due to

nitrate acting as a limiting nutrient in the system,

perhaps resulting in stronger extracellular release of

DMSP (Matrai et al. 2007a) with subsequent conver-

sion to DMS. When nitrate concentrations are higher

than *1 mmol/m3 it may not be limiting, and DMS

concentrations do not follow any noticeable pattern

with nitrate. A similar two-phase relationship was

found between DMSP and nitrate concentrations by

Nian-zhi et al. (2003). It could be, therefore, that the

relationship determined by Nian-Zhi et al. (2003) is

due to the effects of nitrate on extracellular release of

DMSP.

The highest predicted DMS concentrations for July,

August, and September were found in the Greenland

and Barents seas. These areas are generally charac-

terized by lower salinities (due to melting sea ice) and

warmer sea surface temperatures than the rest of the

Arctic basin, which stratifies the water column in the

summer months (Loeng 1991). At low nitrate con-

centrations (\4 mmol/m3), measured DMS concen-

trations can be as high as 18 nM (Fig. 6a). It is

possible that nitrate may be a limiting nutrient in these

areas (see Lara et al. 1994 for the Greenland Sea), and

slight changes in nitrate concentration would place

stress on DMS producers, increasing extracellular

release of DMSP. Under Arctic sea ice (in the Arctic

Basin) DMS concentrations are lower (Leck and

Persson 1996), most likely a direct result of the lack of

sunlight to promote phytoplankton growth. Although,

it is interesting to note that in late winter high

concentrations of DMS have been measured in the

Barents Sea and suggested to have a heterotrophic

source (Matrai et al. 2007b). The Chukchi Sea is
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characterized by mid-level DMS predictions

(1.5–6.0 nM). This sea is an entry point for warmer

water into the Arctic Basin, but due to dilution with

nutrient-poor water and biological utilization, primary

production is lower than in the Greenland or Barents

seas (Cooper et al. 1997), possibly factoring into the

generally lower DMS concentrations in the Chukchi

than in the Greenland or Barents seas. Dominant

phytoplankton taxa may be another important factor.

In peripheral arctic seas, such as the Greenland,

Bering, and Barents seas, colonies of the important

DMS/DMPp-producer Phaeocystis pouchetti can

reach high biomasses, whereas documented phyto-

plankton blooms in the Arctic Ocean are dominated by

diatoms (Tremblay and Gagnon 2009). However,

Matrai and Vernet (1997) suggest that the physio-

logical stage of the bloom may be even more

important than species dominance in Arctic waters.

Ice algae also produce significant amounts of

particulate DMSP and dissolved DMSP plus DMS

(Levasseur et al. 1994), which may at least in part

explain the higher DMS concentrations observed and

predicted close to the ice edge and in the seasonal

ice zone (perhaps due to seeding of the ice edge

phytoplankton bloom).

Due to the influence of DMS on climate (Bates et al.

1987b; Charlson et al. 1987), and the role of the Arctic

in global climate systems (McGuire et al. 2006), the

ability to accurately predict potential changes in Arctic

DMS concentrations could fill a major gap in global

climate scenarios. Spatial modeling exercises similar

to the technique used in this study are at a disadvan-

tage when asked to predict the future for an area where

no assessment data exist (Huettmann and Gottshalk

2010). To perform an accurate future prediction, those

associations determined by TreeNet (i.e., the condi-

tional statements) would have to be applied to future

scenarios for the predictor variables used. For exam-

ple, we would require future scenarios of variables

such as sea ice concentration and nitrate concentration

in order to predict future DMS concentrations. Future

scenarios of variables like nitrate concentrations,

phosphate concentrations, sea ice concentration and

sea surface temperature (for example) may be

obtained from climate earth systems models. It may

therefore be possible with these scenarios to build the

conditional statements from TreeNet directly into

earth system simulations to obtain future predictions

of DMS concentrations. Also, models created in this

study only span the months of July through October,

and in order to obtain year-round DMS for future

scenarios, model predictions would have to be

extended to all months. However, for this to be

successful, further DMS sampling in the Arctic must

occur at spatially- and temporally-regular intervals.

When using spatial data to create predictions, as in

this study, there are large uncertainties, including

accuracy of observations and scale of data. Here, it is

assumed that all measurements and global positioning

system (GPS) coordinates are accurate. In reality,

differences may exist in both measurement techniques

and in shipboard GPS systems. These differences raise

questions about the comparability of data between

multiple studies. This could be corrected for in the

modeling process by determining the techniques used

in each study and then using comparable measure-

ments only. We did not perform such a correction in

this study because the number of data available for the

Arctic was already so low. Also, machine learning

techniques, such as TreeNet, are rather robust when

dealing with erroneous data, and are able to determine

the prominent signals that occur in data beyond any

statistical noise (Craig and Huettmann 2009). Latitude

and longitude values associated with shipboard GPS

also carry an associated error. This can pose the largest

problem when using high-resolution environmental

variables because slight geographic errors could place

a data point in the wrong pixel. Because the environ-

mental variables used in this study were relatively

coarse, it was assumed that GPS error would have little

or no effect on the results.

The model predictions for July were generally

underestimated in comparison to observations. Model

predictions for August through October, however,

seemed to be on the same order as observed values

(Fig. 2). The higher variability of observed data in

July led to model predictions that were, on average,

farther away from observed values than in the other

months in which observed variability was much lower.

This is a known problem with statistical models;

greater variability in the original data causes models to

make predictions that are further away from observed

measurements. It is possible that the variability that

has not been captured by these models could be

explained by adding more environmental predictors.

For the purpose of this study, biological components

which may control DMS processes were ignored

because these variables are not readily available in a
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suitable format. The distribution and concentration of

phytoplankton as well as species composition may be

important in determining DMS concentrations (Le-

vasseur et al. 1994; Gosselin et al. 1997; Vila-Costa

et al. 2006; Matrai et al. 2007b). If biological features

were included in future runs of these models, more of

the variability in the observed data could be accounted

for.

Because of the nature of an a priori method of

analysis (like the exercise in this study), there is the

danger of misinterpreting mechanisms in the system.

If predictive ability is high, and there is little

information on how a variable would logically affect

the target variable, then further research is required.

This approach could be described as using inductive

thought processes (as in this study) to drive deductive

reasoning (experimental research). The interest in

inductive modeling is primarily focused on the output

and assessment of the model, with some allowance for

mechanistic inferences. In the case of this research, we

have made inferences about the effect of nitrate

concentrations and sea ice on DMS concentrations.

Without experimental research, there is no optimal

way to determine whether our findings are due to

random correlation, or to actual mechanisms. How-

ever, we are confident in our interpretation due to the

effects of sea ice and nitrate concentrations on DMS

that have been previously elucidated by other studies

(Matrai et al. 2007a, b; Galı́ and Simó 2010).

The Arctic ecosystem is changing quickly, and the

need for quickly produced, accurate model scenarios is

obvious. At the same time, these models must be able

to take into account the many environmental condi-

tions, and their interactions, which control the systems

in question. Spatial modeling techniques can deal with

messy environmental data; these models run quickly,

and they can help to elucidate complicated interac-

tions. For this study, the relationships between ocean

characteristics and DMS in the high Arctic during

summer months were examined using spatial model-

ing techniques that are commonly implemented in

ecological niche modeling. Sea ice concentration and

nitrate concentrations at the sea surface seem to be

important in accounting for variance in sea surface

DMS concentrations. These relationships can be

applied to future scenarios to examine how DMS

concentrations might change. In order to ensure that

these models are accurate, and to increase overall

knowledge of systems that control DMS concentra-

tions, further DMS measurements are needed. The

Arctic is under-sampled both spatially and temporally,

and therefore our ability to predict changes in this

climatically-important area of our planet is limited.

We recommend that further DMS measurements, with

a more uniform spatial and temporal distribution, be

made in the Arctic. The application and evaluation of

spatially-explicit models like these will help us to

understand biogeochemical systems in the Arctic and,

potentially, how Arctic climate will change. Such

understanding will offer the potential for scientifi-

cally-driven decision making to determine the future

of this important region.
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Appendix

See Table 4 and Fig. 7.

Table 4 Contributors of DMS measurements to the PMEL database initiated by Kettle et al. (2000)

Contributor Platform Region Period Reference(s)

Bates Discoverer Pacific, Arctic Sep–Oct 1985 Bates et al. (1990, 1987a, b)

Staubes Polarstern Greenland Sea Jul–Aug 1990 Staubes-Diederich (1992, 1993a, b)

Leck Oden Arctic Aug–Oct 1991 Leck and Persson (1996)

Sharma Polar Sea Atlantic, Arctic, Pacific Jul 1994 Sharma et al. (1999)

Leck Odin Arctic Jul–Aug 1996 Unpublished
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Galı́ M, Simó R (2010) Occurrence and cycling of dimethylated

sulfur compounds in the Arctic during summer receding of

the ice edge. Mar Chem 122:105–117

Gosselin M, Levasseur M, Wheeler P, Horner R, Booth B (1997)

New measurements of phytoplankton and ice algal pro-

duction in the Arctic Ocean. Deep-Sea Res Pt II 44(8):

1623–1644. doi:10.1016/S0967-0645(97)00054-4

Holland D (2000) Merged IBCAO/ETOPO5 topography

(AOMIP). Center for Atmosphere–Ocean Studies (CA/OS)

of the Courant Institute of Mathematical Sciences Tech.

Rep. Available online at http://efdl.cims.nyu.edu/project_

aomip/forcing_data/topography/merged/overview.html

Huettmann F, Gottshalk T (2010) Simplicity, model fit, com-

plexity and uncertainty in spatial prediction models applied

over time: we are quite sure, aren’t we? In: Drew CA,

Wiersma Y, Huettmann F (eds) Predictive species and

habitat modeling in landscape ecology: concepts and

applications. Springer, New York

Karsten U, Kuck K, Vogt C, Kirst GO (1996) Dimethylsulfo-

niopropionate production in phototrophic organisms and its

physiological function as a cryoprotectant. In: Kiene RP,

Visscher P, Kirst GO, Keller M (eds) Biological and

environmental chemistry of DMSP and related sulfonium

compounds. Plenum Press, New York

Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the

oceans: a comparison of updated data sets and flux models.

J Geophys Res 105(D22): 26,793–26,808

Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS,

Berresheim H et al. (1999) A global database of sea surface

dimethylsulfide (DMS) measurements and a procedure to

predict sea surface DMS as a function of latitude, longitude,

and month. Global Biogeochemical Cycles 13(2):399–444

Kirst GO (1996) Osmotic adjustment in phytoplankton and

macroalgae. In: Kiene RP, Visscher P, Kirst GO, Keller M

(eds) Biological and environmental chemistry of DMSP

and related sulfonium compounds. Plenum Press, New

York

Lara RJ, Kattner G, Tillmann U, Hirche H-J (1994) The north

east water polynya (Greenland Sea) II. Mechanisms of

nutrient supply and influence on phytoplankton distribu-

tion. Polar Biol 14:483–490

Leck C, Persson C (1996) The central Arctic Ocean as a source

of dimethyl sulfide seasonal variability in relation to bio-

logical activity. Tellus 48:156–177

Levasseur M, Gosselin M, Michaud S (1994) A new source of

dimethylsulfide (DMS) for the arctic atmosphere: ice dia-

toms. Mar Biol 121(2):381–387. doi:10.1007/BF00346748

Loeng H (1991) Features of the physical oceanographic condi-

tions of the Barents Sea. In: Sakshaug E, Hopkins CCE,

Oritsland NA (eds) Proceedings of the Pro Mare Sympo-

sium on Polar Marine Ecology, Trondheim, 12–16 May

1990, Polar Research IO(1)

Lundén J, Svensson G, Wisthaler A, Tjernström M, Hansel A,

Leck C (2010) The vertical distribution of atmospheric

DMS in the high Arctic summer. Tellus B 62(3):160–171.

doi:10.1111/j.1600-0889.2010.00458.x

Matrai P, Vernet M (1997) Dynamics of the vernal bloom in

the marginal ice zone of the Barents Sea: Dimethyl sulfide

and dimethylsulfoniopropionate budgets. J Geophys Res

102(C10):22965–22979. doi:10.1029/96JC03870

Matrai P, Tranvik L, Leck C, Knulst JC (2007a) Are high Arctic

surface microlayers a potential source of aerosol organic

precursors? Mar Chem 108(1–2):109–122. doi:10.1016/j.

marchem.2007.11.001

Matrai P, Vernet M, Wassmann P (2007b) Relating temporal

and spatial patterns of DMSP in the Barents Sea to phy-

toplankton biomass and productivity. J Mar Syst 67(1–2):

83–101. doi:10.1016/j.jmarsys.2006.10.001

McGuire D, Chapin FS, Walsh JE, Wirth C (2006) Integrated

regional changes in arctic climate feedbacks: implications

for the global climate system. Ann Rev Environ Resour

31(1):61–91. doi:10.1146/annurev.energy.31.020105.100

253

Nevitt GA, Veit RR, Karieva P (1995) Dimethyl sulphide as a

foraging cue for Antarctic procellariiform seabirds. Nature

376:680–682

Nian-Zhi J, Cheng-Zheng L, Hua-Sheng H, Harada S, Koshik-

awa H, Watanabe M (2003) Dynamics of dimethylsulfide

and dimethylsulfoniopropionate produced by phytoplank-

ton in the Chinese seas—distribution patterns and affecting

factors. Acta Botanica Sin 45(7):774–786

Qu B, Albert GJ (2010) Using genetic algorithms to calibrate a

dimethylsulfide production model in the Arctic Ocean.

Chin J Oc Lim 28(3):573–582. doi:10.1007/s00343-010-

9062-x

Salford Systems (2002) TreeNet version 2.0 data mining

software documentation, San Diego. http://www.salford-

systems.com/. Accessed 20 Sept 2010

Sharma S, Barrie L, Plummer D, McConnell JC, Brickell PC,

Levasseur M et al. (1999) Flux estimation of oceanic

dimethyl sulfide around North America. J Geophys Res

104(D17):21327–21342. doi: 10.1029/1999JD900207
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