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Abstract Storm-petrels have been shown to use dimethyl

sulfide (DMS) as a foraging cue, suggesting that this

compound may be used to predict their distribution. We

describe a new distribution model that employs machine

learning software and geographic information systems to

model storm-petrel distribution. We used environmental

predictor variables that included newly available clima-

tologies of sea surface DMS concentrations to construct

distribution maps of fork-tailed storm-petrel (Oceano-

droma furcata) and Leach’s storm-petrel (O. leucorhoa) in

the North Pacific and Bering Sea. Model accuracy was

assessed by (1) using the area under the receiver operating

characteristic curve (AUC) values and (2) comparing pre-

dicted distributions to presence and non-detection data

from two opportunistic pelagic surveys performed in

summer 2008. Models using all predictor variables gave

AUC values of 0.89 and 0.75, sensitivity values of 0.73 and

0.61, and specificity values of 0.83 and 0.73 for fork-tailed

and Leach’s storm-petrel, respectively. Models using all

predictor variables except DMS gave AUC values of 0.87

and 0.74, sensitivity values of 0.81 and 0.60, and specificity

values of 0.77 for fork-tailed and Leach’s storm-petrel,

respectively. The large-scale link between DMS and how

storm-petrels use it to locate foraging areas was reinforced

by the partial dependence of DMS on the relative index of

occurrence (RIO) of storm-petrels, and by a decrease in

AUC values when removing DMS as a predictor. This

work is a preliminary step toward linking seabird distri-

bution to globally important infochemicals and should be a

basis for further study.
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Introduction

Dimethyl sulfide (DMS) is a catabolic breakdown product

in marine phytoplankton and is released into the ocean

during both senescence and grazing. The air–sea exchange

of DMS is primarily controlled by gas concentration dif-

ferences between air and sea and by turbulence in the lower

atmosphere (Charlson et al. 1987). Once particulate DMS

is transferred to the atmosphere due to wind action, it

begins to form sulfate aerosols via oxidation and becomes

climatically active (Charlson et al. 1987). DMS is linked to

areas of high productivity where macrozooplankton (e.g.,

euphausiids) may be located (Andreae and Raemdonck

1983), and it has been shown to function as a foraging cue

for various marine organisms (Nevitt 2011).
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Experimental evidence suggests that storm-petrels are

responsive to DMS deployed at sea (Nevitt et al. 1995) and

in colonies (Nevitt and Haberman 2002), and that some

petrel species can detect DMS at picomolar concentrations

(Nevitt and Bonadonna 2005). Other species (e.g., African

penguins (Spheniscus demersus)) can detect DMS when it is

experimentally deployed in breeding colonies (Cunningham

et al. 2008). Reef fishes (DeBose et al. 2008) and copepods

(Steinke et al. 2006) also use dimethylsulfoniopropionate,

the precursor to DMS, as infochemicals in trophic interac-

tions. Fork-tailed storm-petrels (Oceanodroma furcata) and

Leach’s storm-petrels (O. leucorhoa) feed on euphausiids

(krill) and other planktonic organisms, and it has been sug-

gested that they use DMS to find productive foraging areas

(Nevitt et al. 1995, 1999).

Fork-tailed storm-petrels nest sympatrically with

Leach’s storm-petrels during the breeding season in the

North Pacific. Both species leave their burrows at night to

forage at sea for several days before returning to their

colonies (Wilbur 1969; Boersma et al. 1980). The use of

olfactory cues in burrowing seabirds like storm-petrels may

be due to evolutionary pressures forcing these birds to

capitalize on patchy prey distribution more quickly than

other species (Van Buskirk and Nevitt 2007). Like other

procellariiformes, these birds have large olfactory bulbs

(Bang 1966) and can track food-related odors including

DMS (Grubb 1979; Nevitt and Haberman 2002; Nevitt

2008).

The North Pacific Pelagic Seabird Database (NPPSD)

contains survey data from the 1970 s to the early 2000 s

and shows fork-tailed storm-petrel mostly distributed in the

Bering Sea, the Gulf of Alaska, and south along the wes-

tern North American coast, with some sightings off the

coast of Japan (Drew and Piatt 2005). The NPPSD shows

Leach’s storm-petrel extending south of (or around) the

Aleutian islands, through the Gulf of Alaska, down the

western coast of North America and off the coast of Japan.

Winter distribution of fork-tailed storm-petrel is assumed

to be limited to its summer distribution in the North Pacific

with recorded sightings on the ice edge during the win-

tertime in the Bering Sea (Onley and Scofield 2007).

Leach’s storm-petrels are thought to move further south

during the winter months, with the majority of sightings

occurring around Hawaii and in the Eastern Pacific

(Huntington et al. 1996; Onley and Scofield 2007). Species

distribution modeling of storm-petrels in the North Pacific,

which could greatly increase our knowledge of what drives

the distribution of these procellarids, has not yet been

performed.

Pelagic seabird studies frequently examine the rela-

tionships between presence/absence data and ocean char-

acteristics such as sea surface temperature, chlorophyll a,

and salinity, with less importance being placed on other

variables (Tremblay et al. 2009). Many of the ocean

parameters used, however, do not directly reflect the sen-

sory mechanisms that seabirds, themselves, use to locate

foraging areas. Using DMS as a predictor variable is a

likely starting place.

Ecological niche modeling has become an established

method for determining species distributions in terrestrial

environments. This method is also important for conserva-

tion management for examining the relationship between the

environment and the distribution of a particular species. The

goal of ecological niche modeling is to predict species

occurrence based on georeferenced presence and non-

detection (absence) points, which, in turn, correlate to some

environmental feature. One of the major advantages of this

type of modeling is that it enables the efficient creation of

large-scale models at both regional and global spatial scales.

Investigating possible variables that may help to

understand the foraging ecology in pelagic seabirds is

important because of the complexity of ecological systems.

Olfactory cues (such as DMS) as represented by clima-

tologies that can be easily associated with presence/

absence data may add important information toward the

predictability of the pelagic distribution of storm-petrels.

The goal of this study was to examine if information could

be added to pelagic distributional models of storm-petrels

by including DMS as a predictor variable.

Materials and methods

We obtained presence and non-detection data for both spe-

cies of storm-petrel for May to August for the years 1974

through 2002 in version 1 of the NPPSD (alaska.usgs.gov/

science/biology/nppsd/index.php) and then projected these

in the World Geodetic System (WGS) 1984 geoid using

ArcGIS Desktop 10.0. Only data taken from large ships using

strip transect methods binned by 10-minute intervals were

used to perform modeling. Each data point reflected a count

of each species located within the 10-minute bin. A presence

point had a count of Leach’s or fork-tailed storm-petrel of

one or more. Non-detection points had a zero count for either

Leach’s or fork-tailed storm-petrel. Non-detection points

may not represent true absences as they can occur if a bird is

not sighted due to observer fatigue, or because a bird may

simply not be in the vicinity at that time. Barbet-Massin et al.

(2012) removed absence points that occurred within the

known range of a species to create true absences. Because the

nature of our goal was to examine whether information is

added to our model by using DMS as a predictor variable, and

because DMS is patchy within the known range of both

species, it was important to keep some absence points in the

known storm-petrel domain. We therefore chose to remove

absence points from within a 40 km radius of presence points
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in order to reduce the number of potential false absences. We

chose 40 km as a radius based on tests with various buffer

sizes (e.g., 0, 20, 40, 80, and 160 km) to determine which

would provide the best models while still allowing models to

resolve (i.e., the larger the buffer, the lower the variation in

the modeling data, thus causing models to not converge on a

solution). Presence data were not excluded 40 km from each

other to match the radius for absence points because even

though there is pseudo replication within bins, we are able to

gain important information from knowing where clusters of

presences are occurring. It is also likely that dynamic

oceanographic variables (such as DMS), and how storm-

petrels are affected by them, operate at very fine spatial

scales in the near-shore regions, which cannot be adequately

reproduced with the data we have available. To take into

account the effect of central place foragers with respect to the

scale of the variables available, we buffered all data to

200 km from colonies. This also allowed us to make a more

targeted assessment of how DMS affects storm-petrels in

pelagic regions. Colony data were obtained from the North

Pacific Seabird Colony Database (alaska.fws.gov/mbsp/

mbm/northpacificseabirds/colonies/default.htm). The train-

ing data were split geographically at 180� longitude, where

all data east of 180 were used to train the algorithm and all

data west of 180 were used to test the performance of the

model. The data were also divided temporally into the

months of May through August in order to include month as a

predictor variable in the models.

We downloaded a suite of monthly climatologies

(‘‘Appendix’’) for the months of May through August. The

years that are represented by these climatologies differ

between data sources. Data downloaded from the World

Ocean Atlas represent all oceanographic information from

all in situ measurements collected by the Global Oceano-

graphic Data Archaeology and Rescue project from 1977 to

2004 (Levitus et al. 2005), the IOC World Ocean Database

project, and the IOC Global Temperature Salinity Profile

project (IOC 1998). Data from the Oceancolor project

represent composite means of data from 2000 to 2009. The

climatologies were projected into WGS 1984 then clipped

to the study area (36–66� latitude in the North Pacific). All

of these climatologies represent a suite of environmental

variables, which represent physical oceanic processes. We

did not include static layers such as bathymetry, or distance

to shoreline or colonies because we removed all data points

within a 200 km radius of colonies. Layers like bathymetry

or distance to coastline are important for near-shore dis-

tributions; however, we were only interested in the infor-

mation gain of DMS in offshore distributions. It is also

often the case that when layers such as bathymetry or

distance to coast (or colony) come up as the most important

predictors, that unusual patterns are found in the output

maps (e.g., regular circular patterns or distributions that

follow bathymetry exactly).

The DMS layer was generated using similar spatial

modeling techniques used in this study. DMS was com-

puted on a global spatial scale and monthly temporal scale

using open access DMS point measurements and a suite of

oceanographic variables (Humphries 2008). All of the

oceanographic layers used in this modeling procedure were

used to derive the DMS layer; however, when examining

the correlations of all the oceanographic layers compared

to DMS via a correlation matrix, we found that there were

no strong linear relationships between DMS and the other

variables. We also computed interactions between vari-

ables within the models and found no strong interactions

between DMS and the other predictor variables, thus jus-

tifying the use of DMS in conjunction with all other vari-

ables in these models.

Autocorrelation occurs when ecological processes may

be expressed as a function of spatial location or time

between samples (e.g., how closely samples are correlated

to one another) (Cushman 2009). Spatial autocorrelation in

a species dataset (e.g., how closely birds flock together in

space) can influence apparent relationships between envi-

ronmental variables (Huettmann and Diamond 2006) and

model evaluation (Hijmans 2012). We calculated Moran’s I

values for our data and determined that the spatial data were

highly autocorrelated (Moran’s I: 0.99, p � 0.001). We

calculated the autocovariate on spatial autocorrelation in the

residuals (RAC) using program R (v2.11; www.rproject.org) as

per Crase et al. (2012). The RAC value was integrated into the

model as a predictor variable to account for autocorrelation.

Filtered presence and non-detection data were overlaid

with all environmental variables using the geospatial

modeling environment (GME; version 0.5.2). Presence and

non-detection data for each month were associated with

the environmental values for their respective months, and

ESRI shapefiles from this process were converted to text

format for modeling. Presence or non-detection data rep-

resented our response variable, while our explanatory

variables in the model were represented by the environ-

mental variables (‘‘Appendix’’), RAC values, and month.

Because of the high number of predictor variables, we

chose a machine learning technique for modeling.

Traditionally, generalized linear (GLMs) or additive

models (GAMs) have been used to analyze and predict

species distributions, but more recently a variety of more

sophisticated algorithms have been developed and applied

(Elith et al. 2006, 2008; Craig and Huettmann 2009; Nur

et al. 2011; Oppel et al. 2011). Many of these algorithms,

such as boosted regression trees (brt), ‘‘learn’’ the rela-

tionship between a target and the many different predictor

variables. GLMs or GAMs require a priori assumptions of
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a data model (Breiman 2001; Elith et al. 2006, 2008).

When we take a statistical approach with no a priori

assumptions regarding what may control the distribution of

these species at sea, the modeling process gains a greater

degree of flexibility. That is, we can perform complex

multi-hypothesis tests on a large variety of predictor vari-

ables that define the region of interest and can, from there,

make conclusions on the distribution of these species. The

brt algorithm uses regression trees to derive the relation-

ships between a series of predictor variables and a target

(response) variable. The algorithm is nonparametric and

does not require any a priori assumptions about the rela-

tionships in the data and therefore allows for great flexi-

bility in model creation (Breiman 2001; Elith et al. 2008).

Another advantage of this tool is that overfitting can be

avoided by cross-validation of the data, which also boosts

prediction power (Friedman 2002; Elith et al. 2006). We

used the ‘‘dismo’’ package in R to implement the brt

algorithm, ‘‘gbm.step’’ (Elith et al. 2008).

The training data were modeled with all of the variables

and then all variables excluding DMS. This design facili-

tated a targeted assessment of the information added by

DMS as a predictor of storm-petrel distribution. This was

first done by using the informed default settings (Elith et al.

2008), which is found to be useful in getting fast, accurate

results (Craig and Huettmann 2009). We therefore used a

tree complexity of 5 to ensure reasonable complexity in our

model and a learning rate of 0.01 with all other settings at

default. The learning rate was then decreased to 0.001, as a

model solution was not reached at the previous learning

rate. Model accuracy was assessed by predicting the rela-

tive index of occurrence (RIO) as calculated by the

gbm.step algorithm to data west of 180� longitude. RIO is,

in essence, the likelihood of locating the focal species

within a map cell. RIO values were compared to presence

and non-detection points within the test data to calculate

assessment values. The most accurate models were those

with the largest area under the receiver operator curve

(AUC) (Fielding and Bell 1997). We also examined the

sensitivity and specificity of the model (i.e., the percentage

of correctly classified presences and absences, respec-

tively). Sensitivity and specificity are straightforward and

easy to interpret metrics, which can help to determine

where models may be failing (e.g., poor prediction of

presences or absences). These values are calculated from

independent data, which is a preferred way to examine the

accuracy of models generated by machine learning algo-

rithms (Bradley 1997; Hegel et al. 2009).

In order to determine the temporal scale on which to model

(i.e., monthly or seasonal), we examined the relative impor-

tance of month briefly. We did this by adding month as a

variable in the model and then examining the partial depen-

dence plots and the variable importance values. We found that

month was not important and no pattern existed in the partial

dependence plots, we therefore chose to model on a seasonal

temporal scale. This was not surprising as there is no evidence

to assume that the distribution of either species would change

over the breeding season when they are raising chicks. Sum-

mer model predictions were represented by visualizing the

relative index of occurrence (RIO) as calculated by the gbm

algorithm. A regular grid of data points at a resolution of

10 km 9 10 km was created in the study area in ArcGIS, and

environmental variables were averaged to derive summer

(May to August) climatologies. The regular grid was then

overlaid with the derived summer climatologies. The trained

model was then used to create predictions to each of the points

in the regular grid.

Model performance was also assessed via two opportu-

nistic surveys we performed in summer 2008 (July and

August). One survey was performed aboard the T/S Oshoro-

Maru in the northeastern Bering Sea. The second survey was

performed aboard the M/V Tiglax between Homer, Alaska,

and Adak Island, Alaska. Many of the survey data aboard the

M/V Tiglax were within 200 km of known colonies, which

falls within the domain of excluded occurrence data. We

opted to keep this data in the evaluation as it helped to make

inferences about how well pelagic oceanographic variables

could model the distribution in the near-shore region.

All data were collected using distance sampling methods

(Thomas et al. 2002). Presences of all species within 400 m

of the ship were recorded using a hand-held GPS. These data

were organized into presence and non-detection of fork-

tailed and Leach’s storm-petrel. Because transects were

\40 km length, we mapped the centroids of all transects and

categorized them as presence or non-detection, thus reducing

the number of data points to 28 transects. Due to there being

only 28 data points, we opted not to calculated AUC values

and examined mean RIO of presences and absences.

We also examined the role of DMS toward the predic-

tions of RIO by examining the partial dependence plots

generated in the ‘‘dismo’’ package. The partial dependence

is not a direct relationship but is a representation of the

relative contribution of DMS to the function, which cal-

culates the RIO. Partial dependence is calculated as an

approximation of the function to predict RIO while taking

into account interactions with all the other predictor vari-

ables (Friedman 2001). These plots can be viewed as

additive or multiplicative with other variables (i.e., other

partial dependences) to create predictions of RIO and are a

useful way of interpreting effects of predictors.

Results

Model AUC values were 0.89 and 0.75 for fork-tailed and

Leach’s storm-petrel, respectively, when using all predictor
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variables. Sensitivity and specificity values were 0.73 and

0.83, respectively, for fork-tailed storm-petrel, while sen-

sitivity and specificity values were 0.61 and 0.73, respec-

tively, for Leach’s storm-petrel when using all predictor

variables. We found that when we ran models without

DMS as a predictor variable, there was some loss of

information in the model. AUC values for both fork-tailed

and Leach’s storm-petrel models decreased to 0.87 and

0.74, respectively. Sensitivity increased to 0.81 for fork-

tailed storm-petrel and decreased to 0.60 for Leach’s

storm-petrel, while specificity values decreased for fork-

tailed storm-petrel to 0.77 and increased for Leach’s storm-

petrel to 0.77 (Table 1).

We briefly examined the variable importance values

determined by the algorithm; however, correlation between

variables may lead to more than one predictor explaining

the same amount of variation as another, thus depressing

the importance of one of those environmental factors

causing importance values to be swapped. We found that

there were no significant linear relationships between DMS

and the other predictor variables via a correlation matrix;

however, this does not take into account non-linear rela-

tionships. We therefore elected not to consider variable

importances in our analysis. We instead focused on the

effect of DMS on the predictions of RIO via partial

dependence plots.

Partial dependence plots of DMS to the RIO of fork-tailed

and Leach’s storm-petrels show trends of higher RIO values

being found at higher concentrations of DMS. The partial

dependence for fork-tailed storm-petrel begins to increase

drastically at approximately 1 nM and plateaus around

10 nM. For Leach’s storm-petrel, there is a similar pattern

where partial dependence values begin to increase at

approximately 3 nM and then plateaus at approximately

30 nM (Fig. 1). Information gained from the modeling

process was used to create distribution maps for both species

of storm-petrel while keeping DMS as a predictor variable.

Distribution maps for fork-tailed and Leach’s storm-

petrels were produced at a resolution of 1 9 1� to match

the same resolution of the predictor variables with an

extent of 36–66� latitude and 140 to -122� longitude

(Fig. 2). Models were poorly resolved around coastlines

due to the coarseness of the predictor variables. The

models represent distribution of both species for the

breeding season (i.e., the months of May through August)

and show relatively ubiquitous distributions within their

individual ranges. Fork-tailed storm-petrels occur much

further north, extending into the Aleutian basin and along

the Eastern coast of the Kamchatka peninsula. Higher RIO

values ([0.90) were found around the edges of the Aleutian

basin, around the Kuril Islands and in the Gulf of Alaska.

There seems to be a definitive boundary to their southern

distribution (*43.5� N), which is corroborated by the lack

of presences south of this border (Fig. 3). However, the

Table 1 Assessment scores

(AUC) for models using all

predictor variables based on an

independent test set west of

180� longitude

FTSP LESP

Sensitivity Specificity AUC Sensitivity Specificity AUC

w/DMS 0.73 0.83 0.89 0.61 0.73 0.75

wo/DMS 0.81 0.77 0.87 0.60 0.77 0.74

Fig. 1 Partial dependence plots of the approximation of the fitted

function of the predictions to concentrations of DMS for fork-tailed

and Leach’s storm-petrel
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model predicts medium–low RIO values off the coast of

Oregon and Washington in the United States. High ([0.70)

RIO values for Leach’s storm-petrel were not predicted

further north than *57� N in the Aleutian basin, corrob-

orated by few presences of Leach’s storm-petrel recorded

in the Aleutian basin (Fig. 4). The range of Leach’s storm-

petrel extended much further south with the highest RIO

values predicted at the southern reaches of the spatial

extent of our models. High RIO values were also predicted

in the northeastern Pacific off the coast of Vancouver

Island, Washington, and Oregon. Both species had high

RIO values predicted throughout the Sea of Okhotsk in

Russia. Also, high RIO values were predicted around the

Aleutian Islands for both species (within 200 km from

shore), in areas with known colonies. Despite the fact that

we excluded all occurrence records 200 km from known

colonies, our pelagic models were able to replicate what is

essentially known about storm-petrel distribution in these

areas (i.e., high likelihood of finding an individual near the

colonies). Some basic ground truthing of the models from

shipboard surveys performed in July and August 2008 help

to corroborate how well the pelagic models we created

could be extended to near-colony regions.

The centroids of the ship surveys show that in 2008,

fork-tailed storm-petrel sightings occurred aboard both

vessels on 10 different transects North and South of the

Alaska Peninsula in the Aleutian Islands. No fork-tailed

storm-petrel was detected North of 56� latitude, coinciding

with areas that were predicted to have low RIO with the

exception of three transects between 56 and 58� latitude

where moderate RIO values were predicted (Fig. 5). Mean

RIO for presences of fork-tailed storm-petrel was 0.94,

while mean RIO of absences was 0.49 (Fig. 6).

Leach’s storm-petrel sightings during the summer of

2008 were limited to only the M/V Tiglax, south of the

Alaska Peninsula and occurred in areas where the model

predicts moderate RIO for this species. Surveys aboard the

T/S Oshoro-maru (where no Leach’s storm-petrels were

observed) were north of the Aleutians in the Bering Sea

(over the Bering shelf) in areas where the model generally

predicts low (\0.10) RIO. Transects south of the Pribilof

Islands contained no observations of Leach’s storm-petrels

Fig. 2 Predicted distribution of fork-tailed (a) and Leach’s (b) storm-

petrel as calculated by the gbm.step algorithm using all predictor

variables and presence/non-detection data from the North Pacific

Pelagic Seabird Database (Drew and Piatt 2005). Values in the

maps represent the relative index of occurrence (RIO) of the focal

species
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Fig. 3 Distribution of presence and non-detection (absence) points

by month of fork-tailed storm-petrel after filtering process from North

Pacific Pelagic Seabird Database (Drew and Piatt 2005). The line at

180� longitude represents the split for the training and testing data.

Data West (to the left) of the line are the testing data, while data East

(to the right) of the line are the training data

Fig. 4 Distribution of presence and non-detection (absence) points

by month of Leach’s storm-petrel after filtering process from North

Pacific Pelagic Seabird Database (Drew and Piatt 2005). The line at

180� longitude represents the split for the training and testing data.

Data West (to the left) of the line are the testing data, while data East

(to the right) of the line are the training data
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despite higher RIO values predicted for those areas.

No Leach’s storm-petrel sightings were recorded west of

-164� longitude, in disagreement with high RIO values

found in the model (Fig. 5). Mean RIO for presences of

Leach’s storm-petrel was 0.31, while mean RIO for

absences was 0.09 (Fig. 6).

Discussion

Our goal was to determine whether DMS could add

information to a model of pelagic storm-petrel distribution

in the North Pacific. Our results show that the addition of

DMS to predictive models of fork-tailed and Leach’s

storm-petrel distribution do add information by increasing

model accuracy. We were also able to confirm a link

between storm-petrels and DMS at biologically appropriate

concentrations by examining patterns in the partial

dependence plots and the AUC values when removing

DMS as a predictor variable. We were also able to create

pelagic distribution models for both Leach’s and fork-

tailed storm-petrels in the North Pacific using all down-

loaded environmental variables with model accuracies

from 0.75 to 0.89.

We ran these models with and without DMS specifically

to investigate its potential as a predictor variable. When

DMS was not included in the model, performance was

lower than when all predictors were used. This indicates

that it is likely that DMS is adding a certain amount of

information to the model (slight increase in predictive

performance). Because a derived variable such as DMS

may not act as a powerful predictor on its own, our results

are not entirely surprising. This was confirmed by a brief

examination of the variable importance plot showing that

DMS was not the most important predictor in these models.

A correlation matrix of all the predictor variables indicated

no significant linear correlations between DMS and other

predictor variables. Correlation between predictor variables

may depress variable importance as one predictor explains

the same variation as another (Grömping 2009). We mea-

sured linear and non-linear interactions between DMS and

the other variables, but because the DMS model was cre-

ated using all of the same predictor variables as used in this

analysis, there may have been some other effect on the

importance of DMS. Because of this, we ignored variable

Fig. 5 Confirmed presence and non-detection (absence) points for

fork-tailed storm-petrel (a) and Leach’s storm-petrel (b) from at-sea

transects performed in summer 2008

Fig. 6 Mean relative index of occurrence values of fork-tailed and

Leach’s storm-petrel compared to centroids of transects performed in

the summer of 2008 as an assessment of model performance
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importances and focused on the partial dependence plots to

examine what information DMS was adding to the model.

We examined the relationship between DMS and the

predicted RIO of both species of storm-petrel via the partial

dependence plots. The partial dependence plots of DMS

show that as concentrations of DMS increase, the partial

dependence of predicted RIO to DMS increases. This is

true for both fork-tailed storm-petrel and Leach’s storm-

petrel. In both cases, there is an increase in the partial

dependence between 1 and 3 nM of DMS. This indicates

that there is more likely to be a presence of either species

of storm-petrel at higher concentrations of DMS. The

concentrations of DMS, which represent higher partial

dependence values, are higher than the oceanic means of

*1–3 nM (Stefels et al. 2007), thus corroborating the

result that storm-petrels were predicted to occur in areas of

high concentrations of DMS. Storm-petrels can track

upwind odor sources (Nevitt 2008), and it is likely that,

even though turnover time for DMS is quite rapid, birds

may track toward broad areas of high productivity (corre-

sponding to higher average DMS concentrations) and then

increase track resolution once arriving in these areas. This

tracking may explain positive relationship in the partial

dependence plots. However, DMS concentrations in the

upper mixed layer can change in a matter of hours or days

(Yang and Tsunogai 2005; Stefels et al. 2007), and the

underlying models of DMS concentrations do not take this

into consideration. Also, only presence and non-detection

data were used in our model and no behavioral information

(i.e., foraging) was incorporated. Because it is theorized

that DMS is used to detect foraging areas and presences

likely include birds that are in transit to foraging sites, the

importance of DMS for predicting storm-petrel distribution

could be depressed.

Many species–environment associations can change

based on the spatial domain chosen (Schneider and Piatt

1986; Huettmann and Diamond 2006). For this study, we

chose the extent to be between 36 and 66� North latitude,

comprising the northern halves of the North Pacific Transi-

tion Zone Province and the Kuroshio Current Province where

36� N lies between the subtropical and subarctic fronts and

66� N is the Arctic Circle (Longhurst 1998). The presence

and non-detection data were further clipped to the extent of

the most coarse data layers (i.e., DMS and salinity), which

led the final models having an extent stretching only to 63� N.

It is possible that biases might exist by excluding presence or

non-detection points due to clipping since many of the

excluded data were in Prince William Sound, Cook Inlet and

in the Shelikof Strait, where storm-petrels have been

observed foraging. We have also not included in this analysis

any physical predictor variables such as distance to coast,

distance to colony, bathymetry, or seamounts. This was done

purposefully due to the exclusion of data up to 200 km from

the nearest colony, which was performed to better examine

the effects of pelagic oceanographic conditions in our model

and to deal with a possible ‘‘colony effect’’ (i.e., many birds

being detected simply due to proximity to a colony, not

representing the pelagic distribution of the birds). In initial

model runs, it was found that these physical variables were

controlling the predictions and masking any effects of

pelagic oceanographic variables, which were important to

the particular question we were addressing. It is unclear as to

the advantages or disadvantages to the method we chose;

however, distribution models yielded high assessment val-

ues (i.e., AUC values of 0.74–0.89) and match what is known

about storm-petrels in the North Pacific. Also, despite having

excluded occurrence records 200 km from colonies, pelagic

models were able to be extended to near-shore regions

accurately. The high RIO values predicted around the

Aleutian Islands would be expected as the likelihood of

finding an individual near a colony is quite high in reality.

This could mean that the broad oceanographic conditions

near the colonies dictate why storm-petrels occur in these

regions (e.g., as opposed to quality of soils or plant structure),

or simply that oceanographic conditions are very similar

between the pelagic and near-shore zones in the Aleutian

Islands. We feel that our models were accurate because they

not only yielded high assessment values, but were also

substantiated by our summer transects in that presences

occurred in areas with higher predicted RIO values than

where no birds were observed.

Survey data agree with the summer modeled distribu-

tions, indicating that the variables that control storm-petrel

distribution have been well captured. It is of importance

here to note that being in an area of high RIO (based on the

model) does not guarantee a storm-petrel sighting (e.g.,

lowered detection rate due to weather or observer fatigue).

The ship could also be passing through at a time when there

are simply no storm-petrels (e.g., perhaps due to time of

day). This is one reason why non-detections can potentially

cause model disagreement. This is demonstrated in Fig. 6,

with a high variability in the mean RIO compared to the

absences of fork-tailed storm-petrel. It is clear, however,

that the RIO compared to presences is high, while RIO

compared to absences is low.

Most of the survey data were taken within the known

distribution of fork-tailed storm-petrels (Boersma and Silva

2001; Onley and Scofield 2007). Presences of fork-tailed

storm-petrels were only found in areas of predicted high

RIO, while many of the non-detections were found in areas

of predicted low RIO. Our model shows Leach’s storm-

petrels to be distributed primarily south of the Aleutians

(Fig. 2b), which also agree with other accounts (Hunting-

ton et al. 1996; Onley and Scofield 2007). The modeled

distribution of Leach’s storm-petrels is also generally

substantiated by survey data that confirmed presences were
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located south of the Aleutians in areas of predicted high

RIO. Although no Leach’s storm-petrels were noted north

of the Aleutians, data from the NPPSD show sightings

there in June and July (Fig. 4).

Our study successfully created predictive models of the

distribution of Leach’s and fork-tailed storm-petrel and

suggests that DMS merits further research as a predictor

variable. Currently, DMS predictions may be too coarse

spatially and temporally to accurately define how storm-

petrels are using this compound to locate foraging areas on

a small scale. Future work on the role of DMS as a pre-

dictor of seabird distribution may help us to create more

accurate models for conservation benefits.
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Appendix

See Table 2.

Table 2 Sources of predictor variables

Dataset (shorthand) Source Resolution

Dimethyl sulfide (dms) Humphries (2008) Thesis Chapter 1 1�
Salinity (sal) World Ocean Atlas (www.nodc.noaa.gov) 1�
Dissolved oxygen (do) World Ocean Atlas (www.nodc.noaa.gov) 1�
Oxygen utilization (o2u) World Ocean Atlas (www.nodc.noaa.gov) 1�
Nitrates (nit) World Ocean Atlas (www.nodc.noaa.gov) 1�
Phosphates (pho) World Ocean Atlas (www.nodc.noaa.gov) 1�
Silicates (sil) World Ocean Atlas (www.nodc.noaa.gov) 1�
Mean sea surface temperature (sstmean) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km

Standard deviation of sea surface temperature (sststdev) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km

Mixed layer depth (mld) Provided by Dr. Sergio M. Vallina 1�
Mean chlorophyll a (chlmean) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km

Standard deviation of chlorophyll a (chlstdev) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km

Chromophoric dissolved organic matter (cdom) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km

Photosynthetically active radiation (par) NASA—Oceancolor project

(www.oceancolor.gsfc.nasa.gov)

1.1 km
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